Development of Large Scientific Knowledge Bases

Peter D. Karp, Ph.D.
Bioinformatics Research Group
SRI International
pkarp@ai.sri.com

BioCyc.org
EcoCyc.org, MetaCyc.org, HumanCyc.org
The Problems

- Create browsable online encyclopedias for genomes and cellular networks
- Computational symbolic theories needed as theory complexity increases
- Quickly assemble an organism-specific database
- Refine that database by incorporating information from the biomedical literature
- Enable biologists to issue precise queries to complex databases
- Applications that solve problems in computational biology drawing from these databases
The Solutions

- The content development approach
 - Computational inference tools
 - Knowledge entry by PhD-level curators
- Web query and visualization tools provide scientists with access
- An ontology enables high-fidelity knowledge representation
- Ocelot KB management environment supports distributed development of large KBs by multiple users
- Applications
- Common Lisp
What to do When Theories Become Larger than Minds can Grasp?

- **Example:** *E. coli* metabolic network
 - 180 pathways involving 744 reactions and 791 substrates

- **Example:** *E. coli* genetic network
 - Control by 97 transcription factors of 1174 genes in 630 transcription units

- **Past solutions:**
 - Experts specialize
 - Publish theories in textual form

- **We cannot compute with theories in those forms**
 - Evaluate theories for consistency with new data: microarrays
 - Refine theories with respect to new data
 - Compare theories describing different organisms
Biological Knowledge Bases

- Store biological knowledge and theories in computers *in a declarative form*
 - Accessible to computational analysis
 - Readable by scientists

- Establish ongoing efforts to curate (maintain, refine, embellish) these knowledge bases
The Metabolic Network

- Chemical **reactions** interconvert **chemical compounds**
- An **enzyme** is a protein that accelerates a chemical reaction
- An enzyme is encoded by one or more genes in the genome
- A **pathway** is a linked set of reactions
The Metabolic Network

- A large network of interconnected biochemical reactions
- *E. coli* metabolic network
 - 220 transporters
 - 915 reactions (edges) involving 785 substrates (nodes)
 - 854 enzymes
- The metabolic map of an organism is determined by the environments of that organism
Pathway Tools Capabilities

- Create and maintain an organism database integrating genome, pathway, regulatory information
 - Computational inference tools
 - Interactive editing tools
- Query and visualize that database
- Use the database to interpret omics data
- Metabolic network analysis tools
- Comparative analysis tools
- Export the metabolic network to SBML
 - Speed creation of flux-balance models by order of magnitude
BioCyc Collection of 507 Pathway/Genome Databases

- **Pathway/Genome Database (PGDB)** – combines information about:
 - Pathways, reactions, substrates
 - Enzymes, transporters
 - Genes, replicons
 - Transcription factors/sites, promoters, operons

- **Tier 1: Literature-Derived PGDBs**
 - MetaCyc
 - EcoCyc – *Escherichia coli* K-12

- **Tier 2: Computationally-derived DBs, Some Curation** – 24 PGDBs
 - HumanCyc
 - Mycobacterium tuberculosis

- **Tier 3: Computationally-derived DBs, No Curation** – 481 DBs
Note

- No formal connection to the Cyc project
BioCyc Web Site Usage

- BioCyc Web site receives 350,000 page views/month

- *E. coli* DB receives 150,000 page views/month
- MetaCyc DB receives 40,000 page views/month

- 56,000 unique visitors in 2009
- 20,000 visitors had at least 50 page views
Alternate Availability of BioCyc

- Data files downloadable for computational analysis
- Downloadable software/database bundle
- Third parties can deposit their PGDBs into PGDB registry for peer-to-peer sharing
Curation

• Computational inference quickly paints an approximate portrait of the organism

• For high value organisms with large scientific communities, paid curators are a worthwhile investment

• For other organisms, computational inference suffices
MetaCyc: Metabolic Encyclopedia

- Describe a representative sample of every experimentally determined metabolic pathway
- Describe properties of metabolic enzymes

- Literature-based DB with extensive references and commentary
- Pathways, reactions, enzymes, substrates

Jointly developed by
- P. Karp, R. Caspi, C. Fulcher, SRI International
- L. Mueller, A. Pujar, Boyce Thompson Institute
- S. Rhee, P. Zhang, Carnegie Institution

Nucleic Acids Research 2010
Applications of MetaCyc

- Reference source on metabolic pathways

- Metabolic engineering
 - Find enzymes with desired activities, regulatory properties
 - Determine cofactor requirements

- Predict pathways from genomes

- Systematic studies of metabolism

- Computer-aided education
MetaCyc Data -- Version 13.6

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathways</td>
<td>1,436</td>
</tr>
<tr>
<td>Reactions</td>
<td>8,200</td>
</tr>
<tr>
<td>Enzymes</td>
<td>6,060</td>
</tr>
<tr>
<td>Small Molecules</td>
<td>8,400</td>
</tr>
<tr>
<td>Organisms</td>
<td>1,800</td>
</tr>
<tr>
<td>Citations</td>
<td>21,700</td>
</tr>
</tbody>
</table>
Taxonomic Distribution of MetaCyc Pathways – version 13.1

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td>883</td>
</tr>
<tr>
<td>Green Plants</td>
<td>607</td>
</tr>
<tr>
<td>Fungi</td>
<td>199</td>
</tr>
<tr>
<td>Mammals</td>
<td>159</td>
</tr>
<tr>
<td>Archaea</td>
<td>112</td>
</tr>
</tbody>
</table>
MetaCyc Curation

- DB updates by 5 staff curators
 - Information gathered from biomedical literature
 - Emphasis on microbial and plant pathways
 - More prevalent pathways given higher priority

- Review-level database

- Four releases per year

- Quality assurance of data and software:
 - Evaluate database consistency constraints
 - Perform element balancing of reactions
 - Run other checking programs
 - Display every DB object
What is Curation?

- Ongoing updating and refinement of a PGDB
- Correcting false-positive and false-negative predictions
- Incorporating information from experimental literature
- Authoring of comments and citations
- Updating database fields
- Gene positions, names, synonyms
- Protein functions, activators, inhibitors
- Addition of new pathways, modification of existing pathways
- Defining TF binding sites, promoters, regulation of transcription initiation and other processes
Community-Based Curation?

- Several significant experiments: Largely has not worked in the life sciences
- The people you most want to enter information are too busy
- Scientific culture does not reward people sufficiently for free contributions
- Biology PhD required to understand the knowledge
- Significant training required for
 - Consistency of style
 - Ability to properly structure complex data
Pathway Tools Software Overview

- Annotated Genome
- PathoLogic
- MetaCyc Reference Pathway DB
- Pathway/Genome Database
- Pathway/Genome Editors
- Pathway/Genome Navigator
Pathway Tools Software: PathoLogic

- Computational creation of new Pathway/Genome Databases
- Transforms genome into Pathway Tools schema and layers inferred information above the genome
- Predicts operons
- Predicts metabolic network
- Predicts which genes code for missing enzymes in metabolic pathways
- Infers transport reactions from transporter names

Karp et al, Briefings in Bioinformatics 2009
Pathway Tools Software: Pathway/Genome Editors

- Interactively update PGDBs with graphical editors
- Support geographically distributed teams of curators with object database system
- Gene editor
- Protein editor
- Reaction editor
- Compound editor
- Pathway editor
- Operon editor
- Publication editor
Pathway Tools Software: Pathway/Genome Navigator

- Querying and visualization of:
 - Pathways
 - Reactions
 - Metabolites
 - Genes/Proteins/RNA
 - Regulatory interactions
 - Chromosomes

- Two modes of operation:
 - Web mode
 - Desktop mode
 - Most functionality shared, but each has unique functionality
Pathway Tools Implementation Details

- **Platforms:**
 - Macintosh, PC/Linux, and PC/Windows platforms

- **Same binary can run as desktop app or Web server**

- **Production-quality software**
 - Version control
 - Two regular releases per year
 - Extensive quality assurance
 - Extensive documentation
 - Auto-patch
 - Automatic DB-upgrade

- **480,000 lines of Lisp code**
Why Do We Code in Common Lisp?

• Gatt studied Lisp and Java implementation of 16 programs by 14 programmers (Intelligence 11:21 2000)
 • The average Lisp program ran 33 times faster than the average Java program
 • The average Lisp program was written 5 times faster than the average Java program

• Roberts compared Java and Lisp implementations of a Domain Name Server (DNS) resolver
 • http://www.findinglisp.com/papers/case_study_java_lisp_dns.html
 • The Lisp version had ½ as many lines as code
Peter Norvig’s Solution

- “I wrote my version in Lisp. It took me about 2 hours (compared to a range of 2-8.5 hours for the other Lisp programmers in the study, 3-25 for C/C++ and 4-63 for Java) and I ended up with 45 non-comment non-blank lines (compared with a range of 51-182 for Lisp, and 107-614 for the other languages). (That means that some Java programmer was spending 13 lines and 84 minutes to provide the functionality of each line of my Lisp program.)”

Pathway Tools Schema / Ontology

- **1064 classes**
 - Datatype classes such as:
 - Pathways, Reactions, Compounds, Macromolecules, Proteins, Replicons, DNA-Segments (Genes, Operons, Promoters)
 - Taxonomies for Pathways, Reactions, Compounds
 - Cell Component Ontology
 - Evidence Ontology

- **277 attributes and relationships**
 - Meta-data: Creator, Creation-Date
 - Comment, Citations, Common-Name, Synonyms
 - Attributes: Molecular-Weight, DNA-Footprint-Size
 - Relationships: Catalyzes, Component-Of, Product
Pathway Tools Architecture

Web Mode

Pathway Genome Navigator

Desktop Mode

Lisp
Perl
Java

GFP API

Protein Editor
Pathway Editor
Reaction Editor

Disk File

Ocelot KBMS

Oracle or MySQL
The Ocelot Data Model

- Frame data model reduces schema complexity
- Frames are of two types: classes, instances

- Frames have slots that define their properties, attributes, relationships
- A slot has one or more values
- Each value can be any Lisp datatype

- Slotunits define metadata about slots:
 - Domain, range, inverse
 - Collection type, number of values, value constraints
Inference Capabilities

- Inheritance of defaults
- Slot values computed via attached procedures
- Maintenance of inverse relationships
- No classifier
- Constraint system
 - Deferred evaluation
 - Tolerant of nonconformant data
Ocelot Storage System Architecture

- **Persistent storage via disk files or Oracle or MySQL**
 - Concurrent development: Oracle or MySQL
 - Single-user development: disk files

- **Oracle/MySQL DBMS storage**
 - DBMS is submerged within Ocelot, invisible to users
 - Relational schema is domain independent, supports multiple KBs simultaneously
 - Frames are cached in memory
 - Frames transferred from DBMS to Ocelot
 - On demand
 - By background prefetcher
 - Persistent disk cache to speed performance via Internet

- **Transaction logging facility**
Transaction Logging

- Relational DBMS stores
 - The latest version of each Ocelot frame
 - A log of all GFP operations applied to KB

- Transaction log enables:
 - Reconstruction of earlier versions of KB
 - View history of changes to an object
 - Update replicates of a KB
 - Detection of update conflicts during concurrency control
 - Undo of updates
Optimistic Concurrency Control

- **Locking approach**
 - Updates to one object can require locking all connected objects, and can cascade to thousands of objects
 - Locking complicates application logic

- **No locking**

- **User performs updates in local workspace**

- **When user commits changes, storage system compares user changes against all other committed changes**
Ocelot Knowledge Server
Schema Evolution

- FRSs store and process class and instance information similarly
- Application can query schema information as easily as it can query instances

- Schema is stored within the DB
- Schema is self documenting
- Schema evolution facilitated by
 - Easy addition/removal of slots, or alteration of slot datatypes
 - Flexible data formats that do not require dumping/reloading of data
Ocelot Results

- Ocelot in use with MetaCyc, EcoCyc, and BioCyc projects for ~13 years
- Manages 500 BioCyc PGDBs of ~10-20K frames each
- MetaCyc PGDB contains 88K frames
- HumanCyc PGDB contains 117K frames

- Supports collaborative development of EcoCyc and MetaCyc by five groups in North America, Australia, and Mexico
New Allegro Cache Based Storage Back-End

- A range of performance experiments in hand
- Results indicate it will scale to thousands of PGDBs
Tools
Pathway Tools Overviews and Omics Viewers

- Genome-scale visualizations of cellular networks
- Harness human visual system to interpret patterns in biological contexts
- Designed to avoid the hairball effect
- Generated automatically from PGDB
- Magnify, interrogate
- Omics viewers paint omics data onto overview diagrams
 - Different perspectives on same dataset
 - Use animation for multiple time points or conditions
 - Paint any data that associates numbers with genes, proteins, reactions, or metabolites
Regulatory Overview and Omics Viewer

- Show regulatory relationships among gene groups
 Genome Overview

E. coli K-12 Genome Overview

Legend:
- Protein gene
- RNA gene

- Transcription unit with experimental evidence
- Transcription unit (predicted)

Mouse over genes for more information. Gene color indicates operon membership.
Gene directionality is indicated by the shaded corner.
Infer Anti-Microbial Drug Targets

- Infer drug targets as genes coding for enzymes that encode chokepoint reactions

- Two types of chokepoint reactions:

 - Chokepoint analysis of *Plasmodium falciparum*:
 - 216/303 reactions are chokepoints (73%)
 - All 3 clinically proven anti-malarial drugs target chokepoints
 - 21/24 biologically validated drug targets are chokepoints
 - 11.2% of chokepoints are drug targets
 - 3.4% of non-chokepoints are drug targets
 - => Chokepoints are significantly enriched for drug targets

Genome Research 14:917 2004
Comparative Analysis

- Via Cellular Overview
- Comparative genome browser
- Comparative pathway table
- Comparative analysis reports
 - Compare reaction complements
 - Compare pathway complements
 - Compare transporter complements
Authoring Precise Database Queries

- How to enable scientists to perform complex SQL-like queries?
- Structured Advanced Query Form
 - Interactive form that guides user in constructing query
 - Javascript implementation
 - Query is pseudo-readable
 - Selectors present user with valid options at every point
 - Such as based on datatype of a given slot
 - Protects user from building malformed queries
 - Schema driven
 - Entire PGDB schema sent to Web browser via XML
 - User need not learn a query language
Structured Advanced Query Form

1. Select database to query
2. Select class to query
3. Define one or more conditions
 - Key advance: Conditions can navigate to related objects
4. Select attributes for query output
5. Select output data format
SAQP User Evaluation

- 8 biologists asked to answer 10 questions using SAQP during session at SRI
 - “Find all E. coli pathways having more than 2 reactions where no reactions contain acetaldehyde”
- One group had no training; one group watched 10 minute video tutorial on SAQP
- Results:
 - 25% of subjects answered 75% of questions
 - 38% of subject answered 50% of questions
 - Highest scores from two participants who watched video and one participant with Perl programming experience
 - Congruence between terminology in questions vs terminology in schema a key factor, as is understanding of schema itself
Summary

- **BioCyc collection of Pathway/Genome Databases**
 - Most PGDBs created computationally
 - Professional curation staff added information from biomedical literature
- **Large user community accesses browsable Web site**
- **Large ontology provides high fidelity representation and compatibility of databases**
Summary

- KB development supported by Ocelot KBMS
 - Persistent KB storage in Oracle and MySQL
 - Transaction log supports optimistic concurrency control
 - Disk cache allows collaboration across continents
- Common Lisp development has allowed a small team to build and maintain a large code base
- Interactive query builder allows scientists to construct precise queries without SQL
- Extensive suite of visualization and analysis applications
Acknowledgements

- **SRI**
 - Suzanne Paley, Ron Caspi, Ingrid Keseler, Carol Fulcher, Markus Krummenacker, Alex Shearer, Tomer Altman, Fred Gilham, Pallavi Kaipa

- **EcoCyc Collaborators**
 - Julio Collado-Vides, Robert Gunsalus, Ian Paulsen

- **MetaCyc Collaborators**
 - Sue Rhee, Peifen Zhang, Kate Dreher
 - Lukas Mueller, Anuradha Pujar

- **Funding sources:**
 - NIH National Center for Research Resources
 - NIH National Institute of General Medical Sciences
 - NIH National Human Genome Research Institute

BioCyc.org

Learn more from BioCyc webinars: biocyc.org/webinar.shtml